
There has been talk of technology and bringing Carroll up to the twenty-first
century. Many people do not understand technology and some that try do not
understand how to deploy it properly. The end result is a waste of money, effort and
because of the failure they then blame the technology itself and proceed to use more
Luddite methods instead. Technology itself is not a ‘thing’, nothing exists that you can
point at and say ‘See that bit there, that is Technology’. Like all other ‘-ology’ words,
‘Technology’ is the study of skill or productive work. If your efforts to deploy a system
isn’t productive it isn’t technology.

To begin with, we need to teach technology in our schools. When I was in High
School and Vo-Tech/CCCTC, I took classes in Electronics. Other trades and sciences were
taught as well; like carpentry or civil engineering. However over time some technology
courses were replaced. The Electronics course that taught circuitry, components and
design was switched out for 3D printing and manufacturing processes. So the
knowledge of what made technology work was replaced with how to put tab A into slot
B; basic mechanics and assembly. This does not teach technology, a student would not
understand how to make a device ‘do’ something and only knows the cursory value of
how it was put together.

Combine this with the effort to teach students software by proprietary
companies using ‘toy’ software, in some cases literally, they then learn wrong methods
for developing software that is installed in those same devices they don’t know how
the functions work. So you end up with no skills to produce quality work. This failure
is masqueraded by the fact that the ‘tool de jour’ is changed every six months. So you
lose your skill set for another and never properly learn either.

We need to stop this fashion trend in the name of STEM and focus on actual skill-
sets and tools. Technology is boring unless you have an interest in it. STEM turns
technology and science into a game that is never used in real life.

My actual work experience has shown there are two main branches used by
actual developers. One is Windows-based and uses Virtual Basic/Mono for software
development. The other is sometimes Windows-based other times Unix-based
(Mac,Linux or BSD) and uses C (ANSI or ISO) or Java for software development.
Hardware-wise, only Electronics, Mechanical or Electrical Engineering experience is
used to develop hardware. 3D printing is just a prototyping system if it is ever used at
all; mostly assembly is done by hand. The Assembly language is used in firmware and
micro-controllers (due to limit resources).

No one uses STEM, no employer asks about STEM, no one uses Perl or Python in
a production system and Java is usually not used in production processes but is
sometimes used in the final products.

The other problem is the confusion between who is developing technology and
who is using it. Throughout the so-called Open Source community, this line is blurred;
not because a person must be both but rather they expect it of you. As a result we have
an industry called ‘IT’ that means absolutely nothing and has become an umbrella
term for computer technology as a whole (and has started to absorb some other
industries as well).

Was this has caused to occur is a niche industry of software developed for one
purpose, not as a focused tool of quality work but rather as a philosophical agenda and
if you don’t agree with such philosophies then there will be no cooperation in
developing the tool for your work purposes.

Within corporate environments, software is seen as property and not a tool. This
limits any adjustment to make a tool fit for a purpose. You are instead expected to
know before hand which tool is needed for which job. Unlike actual hardware where
the design of tools has been established for centuries, thousands of years in some
cases; software has no established design or purpose. There are some common utilities
for basic operation on data (move, copy, delete, etc.) but on the whole there is no
standard and no cooperation on creating one. It’s the old engineering joke; ‘The good
thing about Standards is there are so many to choose from’.

The problem rises mainly from that these tools are seen as proprietary property
of a corporation or the issue of ‘Information Technology’ where there are an infinite
number of ways to accomplish a limited number of tasks. Remember that technology is
the study of skills or work; there is no work produced by information, so ‘IT’ is an
oxymoron.

Open Source was attempt to get an end-work-around the issue of proprietary
ownership using existing copyright laws. This is a problem as it still assumes the
design of software is property. Software is like Songs, they are made of functions as
music is made of notes. No one can own a note but they can own the collection of notes
that make their music. This does not exist in software and has been the subject of
recent lawsuits between Google and Oracle over the Java API (effectively Google wrote
their own API replacement and Oracle didn’t like that but the courts said it was okay
since they didn’t copy or duplicate Oracle’s work). Essentially Google wrote their own
arrangement (how the song is played on an instrument).

The libraries (a collection of functions) and fundamental software to build
programs (compilers and linkers) need to be open and public. Just as you can buy any
tool and parts to build your own devices, structures or machines. You need to be able
to obtain the libraries and compilers to build your own software. Both designing
physical structures (carpentry) and writing computer programs (coding) are Trades
and blue-collar industries. Just take a look at how some companies treat and abuse
their programmers, it’s clearly a manufacturing industry.

Finally we need to address the platform where all these programs are executed.
Like my music analogy, all programs need an instrument. There are two main types of
platforms; micro-controllers and computers. The micro-controller is a small chip
usually with Assembly language software that executes the program on startup (when
power is applied). Your cellphone, Raspberry Pi and most video game consoles are
micro-controller based (so is the radio in your car or mp3 player). You know if you
have a micro-controller device when it is described as needing a ‘firmware’ update.
That term is becoming more generic but it means the program stored in the micro-
controller’s memory.

The second type of platform is an integrated system like your personal computer.
It contains many more functions than a micro-controller and may include several
micro-controllers as part of the integrated system. Some can argue that the Raspberry
Pi is a computer because it contains additional components but I don’t as it is still built
from a micro-controller that requires firmware to operate and load the OS. Some
gaming console in the current generation could be described as computers (but they
are proprietary).

That is the main distinction, the Operating System. It is a set of programs and
libraries upon which all other software on your computer functions. The difference
between firmware and the OS is that firmware mainly drives the hardware of the
device, while your OS drives the software on your computer. This essay is being
written using a word processing suite that draws libraries functions form the OS and
its own libraries.

The point I am trying to make is that every device has its own firmware or OS
and there is no standard or cooperation. Your Android phone uses different formats
from iOS from BSD or Windows. Then you have to get these devices communicating
with tablets, smartphones, 3D printers and other proprietary devices that do not reveal
sufficient technical data to understand how they work.

This is where IT became dominate through the use of the internet (or local
networks) to have these devices speak to one another. Now the current problem; the
reliance on IT for inter-device communication to produce work. Because we didn’t
develop standards or public protocols, we are reliant on a cottage industry pretending
to be mainstream for basic functions and processes. Every conversation about
technology now revolves around the Internet and what to do when service is lost. This
also leads to conversations about access to databases and who owns or has authority to
view or manipulate data.

Due to this reliance on networks, if we don’t establish a county-wide fiber-optic
or other broadband system, we can’t develop any more advanced systems or
technology. Not because we need the internet for advancement but rather our tool-set
is built that way.

There are at least three main areas we need to focus on to bring Carroll into the
21st Century era, a world we will be joining far too late.

First, we need to build an infrastructure of at least two parts; a fiber-optic
network of at least 1.5 Gigabits per sec and a Wi-Fi system (at least 1 Megabit per sec)
to support it, both wireless connections locally and to link in more rural areas. This
will be a dark network (no active light) and we will sell access to providers and use the
fees for maintenance of the network. Service should be available for around $35
dollars a month. This would be comparable with service found in other countries that
have far more network availability.

Second, we need to bring our tech curriculum in schools up to date. We need to
teach computer science and programming in high schools using existing tools found in
the industry. Instead of toy languages (like Scat or Python) we need to focus on
common and best practices using C, Java or VB/Mono depending on target system. A
focus on Unix would be better than Windows due to security flaws and proprietary
ownership of tools and code. So that means using ISO C for programs, Perl (or shell
scripts) for interpreted code and Java for cross-platform programs (despite its
problems it is still the best choice for this purpose).

There is a set of books called the “Write Great Code” Series that does an excellent
job teaching not just how a computer program works and how computer data is
manipulated but also teaches best practices for development cycles as well. It uses
tried and true methods found in Engineering (not IT) by an author that written several
compilers, taught software in university and has literally written the book (several
times) on Assembly Language and Compiler development.

Third, I’d like to build up an actual capacity within the Dept of Public Works (or
more appropriate agency) to develop software and hardware for county needs. We
cannot rely on Corporate America to sell us solutions to problems that their products
are designed for rather than the problems we actually have. I do not want this capacity
performed by the Office of Technology Services whose mandate is to deploy technology
and teach its use to staff. That is a different mindset than the actual development of the
technology. Also the OoTS is focused on IT and not Engineering.

Where appropriate I would like this software to be public property available to
Carroll Residents for their own use. This would open up opportunities and allow
people to being able to use technology for their own purposes much as how existing
hardware tools (hand or power tools) serve communities. Business would have to pay
for support and access to these tools for maintenance and they have corporate
products that they could buy, the average resident does not have such access.

The above three points is the minimum I’d start with and develop capabilities
within our community, students and local businesses from there. I would not focus on
so-called ‘smart’ solutions brought on by ‘IT’ for problems that do not exist.

